>

triangle

binomial coefficient
binomial theorem
thale's theorem
pythagorean theorem

15 pages 8 done
needed: none

>

means

arithmetic-, geometric- & harmonic mean
root mean square
variance

11 pages 11 done
needed: none

>

euler's number e

euler's number e
natural exponential function
exponential growth

15 pages 15 done
needed: none

>

fraction

basic calculus
reduction & expansion
reciprocal fraction

14 pages 14 done
needed: none

>

π

number π
circumference & area of a circle

15 pages 15 done
needed: triangle

>

trigonometry I

sum theorems
sine, cosine & tangent functions

11 pages 11 done
needed: triangle

>

trigonometry II

unit circle
degree & radiant
trigonometric formulas
sine & cosine theorem

12 pages 12 done
needed: π, trigonometry I

>

babylonian root

babylonian root
nth root algorithm
geometric mean ≤ arithmetic mean

15 pages 15 done
needed: eulers's number e


>

trigonometry III

arcus sine, arcus cosine & arcus tangent functions

12 pages 12 done
needed: trigonometry II

>

complex number

pq-formula
imaginary number i
complex calculation

16 pages 16 done
needed: trigonometry II

>

euler's identity

euler's formula
euler's identity
four complex forms

11 pages 11 done
needed: euler's number e
complex number

The chapters should be done in context to each other, since some chapters are preceding others. They lead to the following formulas and concepts:


the number e
natural exponential function: \(e^x = \lim\limits_{n\to \infty} \left(1+\frac{x}{n}\right)^n\)
babylonian root
nth root algorithm for\(\sqrt[n]{z}\)
geometric mean \( =\sqrt[n]{x_1\cdot x_2\cdot x_3 \cdot ... \cdot x_n}\leq\frac{x_1+x_2+x_3+...+x_n}{n}= \) arithmetic mean
binomial coefficient: \(\frac{n!}{k!\cdot(n-k)!} = \binom{n}{k}\)
binomial theorem: \( \left(a+b\right)^n = \sum\limits_{k=0}^{n}\binom{n}{k}\cdot a^{n-k}\cdot b^{k} \)
thale's theorem
pythagorean theorem: \(c^2=a^2+b^2\)
fractions
the number: \(\pi\)
circumference of a circle: \(d\cdot\pi\)
circular area: \(r^2\cdot\pi\)
trigonometric functions like: \(sin(x)\), \(arcsin(x)\)
trigonometric formulas like the sum theorem: \(sin\left(\alpha \pm \beta\right) = sin\left(\alpha\right)\cdot cos\left(\beta\right) \pm cos\left(\alpha\right)\cdot sin\left(\beta\right)\)
root mean square: \(m_{rms} = \sqrt{ \frac{1}{n} \cdot \sum\limits_{i=1}^n {x_i}^2}\)
variance: \(\sigma^2 = \frac{1}{n} \sum\limits_{i=1}^n \left(x_i-m_a\right)^2\)
\(\sigma^2=m_{rms}^2- m_a^2\)
complex numbers
euler's formula: \(e^{ix}=cos(x)+i\cdot sin(x)\)
euler's identity: \(e^{i\pi}+1=0\)